These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Clickable and Antifouling Platform of Poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] for Biosensing Applications.
    Author: Wiarachai O, Vilaivan T, Iwasaki Y, Hoven VP.
    Journal: Langmuir; 2016 Feb 02; 32(4):1184-94. PubMed ID: 26695478.
    Abstract:
    A functional copolymer platform, namely, poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PPgMAMPC), was synthesized by reversible addition-fragmentation chain-transfer polymerization. In principle, the alkyne moiety of propargyl methacrylate (PgMA) should serve as an active site for binding azide-containing molecules via a click reaction, i.e., Cu-catalyzed azide/alkyne cycloaddition (CuAAC), and 2-methacryloyloxyethyl phosphorylcholine (MPC), the hydrophilic monomeric unit, should enable the copolymer to suppress nonspecific adsorption. The copolymers were characterized using Fourier transform infrared (FTIR) and (1)H NMR spectroscopies. Thiol-terminated, PPgMAMPC-SH, obtained by aminolysis of PPgMAMPC, was immobilized on a gold-coated substrate using a "grafting to" approach via self-assembly. Azide-containing species, namely, biotin and peptide nucleic acid (PNA), were then immobilized on the alkyne-containing copolymeric platform via CuAAC. The potential use of surface-attached PPgMAMPC in biosensing applications was shown by detection of specific target molecules, i.e., streptavidin (SA) and DNA, by the developed sensing platform using a surface plasmon resonance technique. The copolymer composition strongly influenced the performance of the developed sensing platform in terms of signal-to-noise ratio in the case of the biotin-SA system and hybridization efficiency and mismatch discrimination for the PNA-DNA system.
    [Abstract] [Full Text] [Related] [New Search]