These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Plasma microRNA miR-1914* and -1915 Suppresses Chemoresistant in Colorectal Cancer Patients by Down-regulating NFIX.
    Author: Hu J, Cai G, Xu Y, Cai S.
    Journal: Curr Mol Med; 2016; 16(1):70-82. PubMed ID: 26695693.
    Abstract:
    OBJECTIVE: We investigated mechanisms of colorectal cancer (CRC) chemoresistance to first-line chemotherapy (capecitabine plus oxaliplatin (XELOX)) and identified two putative chemoresistant microRNAs, miR-1914* and -1915, that are downregulated in plasma samples from patients with chemoresistant CRC. METHODS: A number of plasma samples from CRC patients were analyzed for the levels of miR-1914* and - 1915. Effects of stable and transient expression of 2 microRNAs in human chemoresistant CRC cell lines were analyzed. Tumor formation and chemoresistance in HCT116/5-Fu/OXA that did or did not express 2 microRNAs were analyzed in mice. Nuclear factor I/X (NFIX) was predicted to target the gene of 2 miRNAs and verified in vivo and in vitro. RESULTS: Plasma levels of miR-1914* and -1915 in chemoresistant CRC patients were different than levels in responders, and associated with clinical response. Overexpression of miR-1914* and -1915 in chemoresistant CRC cells reduced resistance to 5-FU and Oxaliplatin in vitro. The microRNAs suppressed chemoresistance in CRC tumors in mice by affecting cell growth, invasion, apoptosis and tumor suppressor function. miR-1914* and -1915 interacted with the 3'-untranslated region of NFIX and reduced NFIX its level in chemoresistant CRC cells. Overexpression of NFIX did not inhibit chemoresistant CRC cell motility and chemoresistant proteins when miR-1914* and -1915 were transfected. CONCLUSION: Plasma miR-1914* and -1915 interact with NFIX RNA and reduce its level in chemoresistant CRC cells to first-line chemotherapy. Up-regulation of miR-1914* and -1915 decreased the chemoresistance abilities of chemoresistant CRC cells. The plasma miR-1914* and -1915 may play a role in colorectal cancer therapy and diagnosis.
    [Abstract] [Full Text] [Related] [New Search]