These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth of Lithium Lanthanum Titanate Nanosheets and Their Application in Lithium-Ion Batteries. Author: Lin X, Wang H, Du H, Xiong X, Qu B, Guo Z, Chu D. Journal: ACS Appl Mater Interfaces; 2016 Jan 20; 8(2):1486-92. PubMed ID: 26697735. Abstract: In this work, lithium-doped lanthanum titanate (LLTO) nanosheets have been prepared by a facile hydrothermal approach. It is found that with the incorporation of lithium ions, the morphology of the product transfers from rectangular nanosheets to irregular nanosheets along with a transition from La2Ti2O7 to Li0.5La0.5TiO3. The as-prepared LLTO nanosheets are used to enhance electrochemical performance of the LiCo1/3Ni1/3Mn1/3O2 (CNM) electrode by forming a higher lithium-ion conductive network. The LiCo1/3Ni1/3Mn1/3O2-Li0.5La0.5TiO3 (CNM-LLTO) electrode shows better a lithium diffusion coefficient of 1.5 × 10(-15) cm(2) s(-1), resulting from higher lithium-ion conductivity of LLTO and shorter lithium diffusion path, compared with the lithium diffusion coefficient of CNM electrode (5.44 × 10(-16) cm(2) s(-1)). Superior reversibility and stability are also found in the CNM-LLTO electrode, which retains a capacity at 198 mAh/g after 100 cycles at a rate of 0.1 C. Therefore, it can be confirmed that the existence of LLTO nanosheets can act as bridges to facilitate the lithium-ion diffusion between the active materials and electrolytes.[Abstract] [Full Text] [Related] [New Search]