These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Author: Chapple SJ, Keeley TP, Mastronicola D, Arno M, Vizcay-Barrena G, Fleck R, Siow RCM, Mann GE. Journal: Free Radic Biol Med; 2016 Mar; 92():152-162. PubMed ID: 26698668. Abstract: The effects of physiological oxygen tension on Nuclear Factor-E2-Related Factor 2 (Nrf2)-regulated redox signaling remain poorly understood. We report the first study of Nrf2-regulated signaling in human primary endothelial cells (EC) adapted long-term to physiological O2 (5%). Adaptation of EC to 5% O2 had minimal effects on cell ultrastructure, viability, basal redox status or HIF1-α expression. Affymetrix array profiling and subsequent qPCR/protein validation revealed that induction of select Nrf2 target genes, HO-1 and NQO1, was significantly attenuated in cells adapted to 5% O2, despite nuclear accumulation and DNA binding of Nrf2. Diminished HO-1 induction under 5% O2 was stimulus independent and reversible upon re-adaptation to air or silencing of the Nrf2 repressor Bach1, notably elevated under 5% O2. Induction of GSH-related genes xCT and GCLM were oxygen and Bach1-insensitive during long-term culture under 5% O2, providing the first evidence that genes related to GSH synthesis mediate protection afforded by Nrf2-Keap1 defense pathway in cells adapted to physiological O2 levels encountered in vivo.[Abstract] [Full Text] [Related] [New Search]