These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.
    Author: Tang X, Zhang C, Li Z, Yang X.
    Journal: Bioresour Technol; 2016 Feb; 202():8-14. PubMed ID: 26700753.
    Abstract:
    In this study, hydrothermal liquefaction (HTL) experiments of Nannochloropsis and Spirulina were carried out at different temperatures (220-300 °C) to explore the effects of temperature on bio-crude yield and properties. The optimal temperature for bio-crude yield was around 260-280 °C. Transfers of element and chemical compounds in bio-crude were discussed in detail to deduce the reaction mechanism. The hydrogen and carbon recoveries were consistent with the results of bio-crude yields at every temperature point. The relative percentage of fatty acid in bio-crude decreased and the amine and amide increased for both microalgae with temperature rising. The N-heterocyclic compounds in bio-crude increased with temperature rising for Nannochloropsis, while decreased when temperature increased from 220 °C to 280 °C for Spirulina. Bio-crude gained at higher temperature or from microalgae with high protein content may contain high heteroatom compounds.
    [Abstract] [Full Text] [Related] [New Search]