These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Activation of microglia and astrocytes in different spinal segments after peripheral nerve injury in mice].
    Author: Liu N, Zang KK, Zhang YQ.
    Journal: Sheng Li Xue Bao; 2015 Dec 25; 67(6):571-82. PubMed ID: 26701632.
    Abstract:
    Spinal microglia and astrocytes play an important role in mediating behavioral hypersensitive state following peripheral nerve injury. However, little is known about the expression patterns of activated microglia and astrocytes in the spinal dorsal horn. The aim of the present study was to investigate the spatial distribution of microglial and astrocytic activation in cervical, thoracic, lumbar and sacral segments of spinal dorsal horn following chronic constriction injury (CCI) of sciatic nerve. The hind paw withdrawal threshold (PWT) of wild type (WT), CX3CR1(YFP) and GFAP(YFP) transgenic mice to mechanical stimulation was determined by von Frey test. Immunofluorescence staining was used to examine the spatial distribution of microglial and astrocytic activation in the spinal dorsal horn. Following CCI, all the WT, CX3CR1(YFP) and GFAP(YFP) mice developed robust allodynia in the ipsilateral paw on day 3 after CCI, and the allodynia was observed to last for 14 days. In comparison with sham groups, the PWTs of CCI group animals were significantly decreased (P < 0.01, n = 6). On day 14 after CCI, CX3CR1(YFP)-GFP immunofluorescence intensity was significantly increased in the ipsilateral lumbar spinal dorsal horn of the CX3CR1(YFP) mice (P < 0.01, n = 6), but no detectable changes were observed in other spinal segments. Increased GFAP(YFP)-GFP immunofluorescence intensity was observed in the ipsilateral thoracic, lumbar and sacral spinal segments of the GFAP(YFP) mice on day 14 after CCI. Iba-1 and GFAP immunofluorescence staining in WT mice showed the same result of microglia and astrocyte activation on day 14 after CCI. CX3CR1(YFP)-GFP and GFAP(YFP)-GFP immunofluorescence signal was colocalized with microglial marker Iba-1 and astrocytic marker GFAP, respectively. Interestingly, on day 3 after CCI, Iba-1-immunoreactivity was significantly increased in the ipsilateral thoracic, lumbar and sacral spinal segments of WT mice, whereas the significant upregulation of GFAP-immunoreactivity restrictedly occurred in the ipsilateral lumbar spinal segment. These results suggest that microglial and astrocytic activation may be involved in the development and maintenance of secondary allodynia in mice with neuropathic pain.
    [Abstract] [Full Text] [Related] [New Search]