These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Penicillin impregnation on oxygen plasma surface functionalized chitosan/Antheraea assama silk fibroin: Studies of antibacterial activity and antithrombogenic property.
    Author: Choudhury AJ, Gogoi D, Kandimalla R, Kalita S, Chaudhari YB, Khan MR, Kotoky J, Chutia J.
    Journal: Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():475-484. PubMed ID: 26706554.
    Abstract:
    Low temperature plasma can effectively tailor the surface properties of natural polymeric biomaterials according to the need for various biomedical applications. Non-mulberry silk, Antheraea assama silk fibroin (AASF) is a natural polymer having excellent biocompatibility and mechanical strength yet unlike mulberry silk, Bombyx mori silk fibroin, has drawn less interest in biomedical research. In the quest for developing as potential biomaterial, surface functionalization of plasma induced chitosan (Cs) grafted AASF ((AASF/O2-CS)g/O2) yarn is carried out using oxygen (O2) plasma. The (AASF/O2-CS)g/O2 yarn exhibits enhanced antithrombogenic property as well as antimicrobial activity against Gram positive (Bacillus subtilis) and Gram negative (Escherichia coli) bacteria as compared to AASF yarn. Moreover, impregnation of antibiotic drug (penicillin G sodium salt, PEN) on (AASF/O2-CS)g/O2 yarn further improves the observed properties. In-vitro hemolysis assay reveals that O2 plasma treatment and subsequent impregnation of PEN do not affect the hemocompatibility of AASF yarn. The present research findings demonstrate that plasma induced grafting of Cs followed by penicillin impregnation could significantly improve the potential applicability of AASF in the field of surgical research.
    [Abstract] [Full Text] [Related] [New Search]