These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Injury-specific functional alteration of N-type voltage-gated calcium channels in synaptic transmission of primary afferent C-fibers in the rat spinal superficial dorsal horn. Author: Takasu K, Ogawa K, Minami K, Shinohara S, Kato A. Journal: Eur J Pharmacol; 2016 Feb 05; 772():11-21. PubMed ID: 26708163. Abstract: We investigated functional alterations of voltage-gated calcium channels (VGCCs) in excitatory synaptic transmission from primary afferent A- and C-fibers after peripheral nerve injury. Patch-clamp recordings were performed on substantia gelatinosa (SG) neurons of spinal cord slices with an attached dorsal root, prepared from L5 spinal nerve-ligated (SNL) rats. The effects of neuronal VGCC blockers, ω-conotoxin GVIA (ω-CgTX) for N-type channels and ω-agatoxin IVA (ω-AgaIVA) for P/Q-type channels, on evoked excitatory postsynaptic currents (eEPSCs) by stimulation of A- or C-fibers were studied. Besides, electrophysiological assay using dorsal root ganglion (DRG) and immunohistochemistry were done. In naïve rats, ω-CgTX (0.1-1μM) reduced more effectively A-fiber eEPSCs than C-fiber ones. After nerve injury, ω-CgTX produced great inhibition of C-fiber eEPSCs in slices with the injured L5 dorsal root of SNL model rats, as compared to sham-operated rats. By contrast, in slices with the non-injured L4 one, inhibitory effects of ω-CgTX were not changed. This occurred concurrently with increased expression of N-type VGCCs in L5 spinal dorsal horn and with enhanced Ca(2+) currents through N-type VGCCs in small-sized (C-type) L5 DRG. In terms of A-fiber eEPSCs, ω-CgTX elicited similar inhibition in nerve-injured and sham-operated rats. ω-AgaIVA (0.1μM) had less effect on A- or C-fiber eEPSCs. These results indicate that N-type, but not P/Q-type, VGCCs mainly contribute to excitatory synaptic transmission from A- and C-fibers in the spinal dorsal horn. More importantly, following nerve injury, the functional contribution of N-type VGCCs to nociceptive transmission is increased in the pre-synaptic terminals of injured C-fibers.[Abstract] [Full Text] [Related] [New Search]