These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Author: Wang S, Zhang J, Wang Y, Chen M. Journal: Nanomedicine; 2016 Feb; 12(2):411-20. PubMed ID: 26711968. Abstract: UNLABELLED: MicroRNAs (miRNAs) play critical roles in modulating the oncogenic driver pathways involved in the acquisition of resistance to cancer treatments. MiR-542-3p serves as a potent tumor suppressor molecule by targeting tumor suppressor p53 and apoptosis inhibitor survivin. A hyaluronic acid (HA)-decorated polyethylenimine-poly(d,l-lactide-co-glycolide) (PEI-PLGA) nanoparticle system was developed in this study for targeted co-delivery of doxorubicin (DOX) and miR-542-3p for triple negative breast cancer (TNBC) therapy. This system showed an average size at 131.7 nm and high drug encapsulation efficiency, and prevented miR-542-3p degradation in the serum. HA/PEI-PLGA nanoparticles increased both drug uptake and cytotoxicity in MDA-MB-231 cells compared to MCF-7 cells, which express lower CD44 levels. Intracellular restoration of miR-542-3p further promoted TNBC cell apoptosis via activating p53 and inhibiting survivin expression. These results indicate that HA/PEI-PLGA nanoparticles have the potential to co-deliver chemotherapeutic agents and tumor suppressive miRNAs in combinatorial TNBC therapy. FROM THE CLINICAL EDITOR: Breast cancer is a leading cause of mortality in women worldwide. The so-called triple negative tumors for estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) usually signifies poor prognosis. In this article, the authors developed a hyaluronic acid (HA)-decorated polyethylenimine-poly(D,L-lactide-co-glycolide) (PEI-PLGA) nanoparticle system for the delivery of both doxorubicin (DOX) and miR-542-3p against this tumor sub-type. This may represent a promising new therapy to treat breast cancer patients in the near future.[Abstract] [Full Text] [Related] [New Search]