These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Density Functional Theory Study of Hydrogen Adsorption in a Ti-Decorated Mg-Based Metal-Organic Framework-74.
    Author: Suksaengrat P, Amornkitbamrung V, Srepusharawoot P, Ahuja R.
    Journal: Chemphyschem; 2016 Mar 16; 17(6):879-84. PubMed ID: 26717417.
    Abstract:
    The Ti-binding energy and hydrogen adsorption energy of a Ti-decorated Mg-based metal-organic framework-74 (Mg-MOF-74) were evaluated by using first-principles calculations. Our results revealed that only three Ti adsorption sites were found to be stable. The adsorption site near the metal oxide unit is the most stable. To investigate the hydrogen-adsorption properties of Ti-functionalized Mg-MOF-74, the hydrogen-binding energy was determined. For the most stable Ti adsorption site, we found that the hydrogen adsorption energy ranged from 0.26 to 0.48 eV H2 (-1) . This is within the desirable range for practical hydrogen-storage applications. Moreover, the hydrogen capacity was determined by using ab initio molecular dynamics simulations. Our results revealed that the hydrogen uptake by Ti-decorated Mg-MOF-74 at temperatures of 77, 150, and 298 K and ambient pressure were 1.81, 1.74, and 1.29 H2  wt %, respectively.
    [Abstract] [Full Text] [Related] [New Search]