These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microscopic prediction of speech intelligibility in spatially distributed speech-shaped noise for normal-hearing listeners. Author: Geravanchizadeh M, Fallah A. Journal: J Acoust Soc Am; 2015 Dec; 138(6):4004-15. PubMed ID: 26723354. Abstract: A binaural and psychoacoustically motivated intelligibility model, based on a well-known monaural microscopic model is proposed. This model simulates a phoneme recognition task in the presence of spatially distributed speech-shaped noise in anechoic scenarios. In the proposed model, binaural advantage effects are considered by generating a feature vector for a dynamic-time-warping speech recognizer. This vector consists of three subvectors incorporating two monaural subvectors to model the better-ear hearing, and a binaural subvector to simulate the binaural unmasking effect. The binaural unit of the model is based on equalization-cancellation theory. This model operates blindly, which means separate recordings of speech and noise are not required for the predictions. Speech intelligibility tests were conducted with 12 normal hearing listeners by collecting speech reception thresholds (SRTs) in the presence of single and multiple sources of speech-shaped noise. The comparison of the model predictions with the measured binaural SRTs, and with the predictions of a macroscopic binaural model called extended equalization-cancellation, shows that this approach predicts the intelligibility in anechoic scenarios with good precision. The square of the correlation coefficient (r(2)) and the mean-absolute error between the model predictions and the measurements are 0.98 and 0.62 dB, respectively.[Abstract] [Full Text] [Related] [New Search]