These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nucleotide polymorphisms in the bovine lymphotoxin A gene and their distribution among Bos indicus zebu cattle breeds.
    Author: Behl JD, Mishra P, Verma NK, Niranjan SK, Dangi PS, Sharma R, Behl R.
    Journal: Gene; 2016 Mar 15; 579(1):82-94. PubMed ID: 26724420.
    Abstract:
    The present study was undertaken to characterize the genetic variation present in lymphoxin A gene (LTA gene) encoding for the lymphotoxin A protein also known as tumor necrosis factor beta, a cytokine produced by lymphocytes, known to be cytotoxic for a wide range of tumor cells both in vitro and in vivo, and, which is essential for normal immunological development; in 40 animals of 5 diverse Bos indicus Indian zebu cattle breeds. These breeds survive under the harsh and tough tropical climatic conditions of various parts of the Indian subcontinent. The LTA gene in the present study was observed to contain 33 SNPs and 3 small insertion/deletion polymorphisms. Four SNPs occurred in the coding regions of the gene viz. g.1327A>G and g.1400C>T in exon 2 and g.1840C>T and g.1942C>T in exon 3, of which the SNP g.1327A>G in exon 2 resulted in a non-synonymous amino acid change G38D. This amino acid change was however predicted not be affecting the protein function in any manner. The gene contained putative transcription factor binding sites for the c-Re1 and for Pax-4 transcription factors. A putative promoter region was also predicted on the reverse DNA strand from position 894 to 644. Several repeat elements and microsatellite repeats were detected to be occurring across the 3.2kb LTA gene sequence. The study showed the occurrence of 40 genotypes and 48 most probable haplotypes. The genotypes at the observed SNP positions in the LTA gene were in near Hardy-Weinberg equilibrium. A negative Tajima's D value that was not significant statistically at P>0.10 indicated that the neutral mutation hypothesis could not be excluded. The genetic variations observed in the LTA gene in the present study have not been reported earlier and these could possibly be used as molecular markers for further studies involving association of the gene variability with disease resistance/tolerance traits.
    [Abstract] [Full Text] [Related] [New Search]