These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Topographical and planar distribution of Helix pomatia lectin-binding glycoconjugates in secretory granules and plasma membrane of pancreatic exocrine acinar cells of the rat: demonstration of membrane heterogeneity. Author: Kan FW, Bendayan M. Journal: Am J Anat; 1989; 185(2-3):165-76. PubMed ID: 2672769. Abstract: The lectin-gold technique was used to detect Helix pomatia lectin (HPL) binding sites directly on thin sections of rat pancreas embedded in Lowicryl K4M and on freeze-fractured preparations of rat pancreas submitted to fracture label. On thin sections of acinar cells, whereas the content of zymogen granules was negative or weakly labeled, the limiting membrane displayed a high degree of labeling. In the Golgi complex, labeling by HPL was localized on the trans saccules and the limiting membrane of the condensing vacuoles. The latter appeared to be more intensely labeled than the membrane of the zymogen granules. Intense labeling by HPL was also observed along the microvilli and the plasma membrane. In contrast to the weak labeling of the zymogen-granule content, labeling of the acinar lumen was intense. Fracture-label preparations revealed preferential partition of HPL-binding sites to the exoplasmic half of the zymogen-granule and plasma membranes. The population of zymogen granules was, however, heterogeneous with respect to labeling intensity; the exoplasmic fracture-face of the plasma membrane was intensely and uniformly labeled, while the protoplasmic membrane halves were only weakly labeled. These observations were further confirmed and extended by the thin-section fracture-label approach. In addition, favorable profiles of thin sections of freeze-fractured zymogen granules showed that the labeling was not associated with the external surface of the limiting membrane, but rather localized over the exoplasmic fracture-face. We conclude that 1) zymogen granules contain little HPL-binding glycoconjugates, 2) HPL-binding sites are preferentially associated with the exoplasmic half of the zymogen-granule and plasma membranes, and 3) the limiting membrane of the immature condensing vacuoles carries a greater number of HPL-binding sites than that of the mature zymogen granules. These last, in turn, constitute a heterogenous population with respect to labeling density. These results support the current view that glycoconjugates are directed toward the lumen in secretory granules but become external to the cell surface after fusion of the secretory-granule membrane with the plasma membrane. Also, the results reflect membrane modifications during the maturation process of secretory granules in the exocrine pancreas in which glycoproteins are removed from the limiting membrane of the granule to become soluble and secreted with the content.[Abstract] [Full Text] [Related] [New Search]