These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis.
    Author: Sun J, Ling Z, Wang F, Chen W, Li H, Jin J, Zhang H, Pang M, Yu J, Liu J.
    Journal: Neurosci Lett; 2016 Feb 02; 613():30-5. PubMed ID: 26733300.
    Abstract:
    Probiotics participate actively in the neuropsychiatric disorders. However, their roles on ischemic stroke remain unclear. This study aims to determine whether Clostridium butyricum (C. butyricum) could attenuate cerebral ischemia/reperfusion (I/R) injury and its possible mechanisms. Male ICR mice were intragastrically pretreated with C. butyricum for 2 successive weeks, and then subjected to cerebral I/R injury induced by the bilateral common carotid artery occlusion (BCCAO) for 20min. After 24h of the reperfusion, neurological deficit scores were evaluated. Histopathological changes of the hippocampus neurons were observed using Hematoxylin and eosin (H&E) and TUNEL staining. Malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the brain were detected. The expression of Caspase-3, Bax and Bcl-2 were investigated by Western blot and immunohistochemistry analysis. The butyrate contents in the brain were determined. Our results showed that cerebral I/R injury led to neurological deficit, increased levels of Caspase-3 and Bax and decreased Bcl-2/Bax ratio. C. butyricum significantly improved neurological deficit, relieved histopathologic change, decreased MDA contents and increased SOD activities in the I/R injury mice. After C. butyricum pretreatment, the expression of Caspase-3 and Bax were significantly decreased, the Bcl-2/Bax ratio was significantly increased, and butyrate contents in the brain were significantly increased. These findings suggested that C. butyricum is able to exert neuroprotective effects against I/R injury mice through anti-oxidant and anti-apoptotic mechanisms, and reversing decrease of butyrate contents in the brain might be involved in its neuroprotection.
    [Abstract] [Full Text] [Related] [New Search]