These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A further comparison of insulin- and phorbol ester-stimulated glucose transport in adipocytes. Author: Cherqui G, Caron M, Wicek D, Capeau J, Picard J. Journal: Mol Cell Endocrinol; 1989 Aug; 65(1-2):13-25. PubMed ID: 2673889. Abstract: Insulin and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) stimulatory effects on adipocyte glucose transport were compared for their sensitivity to: (1) sphingosine and staurosporine, two potent protein kinase C (PKC) inhibitors; and (2) phenylarsine oxide (PhAsO), a dithiol reagent blocking insulin-stimulated glucose transport. None affected basal 2-deoxyglucose transport, cell viability, cellular ATP content, or insulin binding. Insulin- and PMA-stimulated 2-deoxyglucose transport were both markedly inhibited by sphingosine (5-50 microM) and staurosporine (0.1-2 microM), although with differences in the extents of maximal inhibitions (65 and 48% vs. 88 and 98%) and the concentrations of the drugs causing the half-maximal inhibitions observed in the experiments (2- to 3-fold higher for insulin). Insulin and PMA both altered PKC along with glucose transport, either by increasing its activity in the cytosol or by promoting its translocation to membrane. Insulin- and PMA-stimulated 2-deoxyglucose transport were both inhibited selectively by PhAsO (0.1-1 microM), at almost identical maximal inhibitions (84 and 90%) and IC50 values (0.18 and 0.16 microM). Furthermore, insulin- and PMA-induced increases in transport Vmax (6.5- and 3.4-fold) were both reduced by 89% by PhAsO, which, however, failed to affect the decrease in transport Km (1.7-fold) exclusively induced by insulin. Likewise, PhAsO did not affect insulin or PMA activation of PKC. The results suggest that insulin activates adipocyte glucose transport through: (1) a PKC-dependent mechanism requiring cellular dithiols, responsible for a part of the hormone-induced increase in transport Vmax; and (2) a PKC-independent mechanism responsible for both a further increase in transport Vmax and a decrease in transport Km.[Abstract] [Full Text] [Related] [New Search]