These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin. Author: Xia X, Li Z, Liu K, Wu Y, Jiang D, Lai Y. Journal: J Invest Dermatol; 2016 Mar; 136(3):621-630. PubMed ID: 26739093. Abstract: Staphylococcus epidermidis (S. epidermidis) plays a critical role in modulating cutaneous inflammatory responses in skin. Although S. epidermidis has been shown to co-colonize with Propionibacterium acnes (P. acnes) in acne lesions, it is unclear whether S. epidermidis is involved in the regulation of P. acnes-induced inflammatory responses. In this study, we demonstrated that S. epidermidis inhibited P. acnes-induced inflammation in skin. P. acnes induced the expression of interleukin-6 and tumor necrosis factor-α via the activation of toll-like receptor (TLR) 2 in both keratinocytes and mouse ears. Staphylococcal lipoteichoic acid activated TLR2 to induce miR-143 in keratinocytes, and miR-143, in turn, directly targeted 3' UTR of TLR2 to decrease the stability of TLR2 mRNA and then decreased TLR2 protein, thus inhibiting P. acnes-induced proinflammatory cytokines. The inhibitory effect of miR-143 was further confirmed in vivo as the administration of miR-143 antagomir into mouse ears abrogated the inhibitory effect of lipoteichoic acid on P. acnes-induced inflammation in skin. Taken together, these observations demonstrate that staphylococcal lipoteichoic acid inhibits P. acnes-induced inflammation via the induction of miR-143, and suggest that local modulation of inflammatory responses by S. epidermidis at the site of acne vulgaris might be a beneficial therapeutic strategy for management of P. acnes-induced inflammation.[Abstract] [Full Text] [Related] [New Search]