These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel rechargeable calcium phosphate dental nanocomposite.
    Author: Zhang L, Weir MD, Chow LC, Antonucci JM, Chen J, Xu HH.
    Journal: Dent Mater; 2016 Feb; 32(2):285-93. PubMed ID: 26743970.
    Abstract:
    OBJECTIVES: Calcium phosphate (CaP) composites with Ca and P ion release can remineralize tooth lesions and inhibit caries. But the ion release lasts only a few months. The objectives of this study were to develop rechargeable CaP dental composite for the first time, and investigate the Ca and P recharge and re-release of composites with nanoparticles of amorphous calcium phosphate (NACP) to achieve long-term inhibition of caries. METHODS: Three NACP nanocomposites were fabricated with resin matrix of: (1) bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) at 1:1 mass ratio (referred to as BT group); (2) pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at 1:1 ratio (PE group); (3) BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (BisMEP) at 2:1:1 ratio (BTM group). Each resin was filled with 20% NACP and 50% glass particles, and the composite was photo-cured. Specimens were tested for flexural strength and elastic modulus, Ca and P ion release, and Ca and P ion recharge and re-release. RESULTS: NACP nanocomposites had strengths 3-fold of, and elastic moduli similar to, commercial resin-modified glass ionomer controls. CaP ion recharge capability was the greatest for PE group, followed by BTM group, with BT group being the lowest (p<0.05). For each recharge cycle, CaP re-release reached similarly high levels, showing that CaP re-release did not decrease with more recharge cycles. After six recharge/re-release cycles, NACP nanocomposites without further recharge had continuous CaP ion release for 42 d. SIGNIFICANCE: Novel rechargeable CaP composites achieved long-term and sustained Ca and P ion release. Rechargeable NACP nanocomposite is promising for caries-inhibiting restorations, and the Ca and P ion recharge and re-release method has wide applicability to dental composites, adhesives, cements and sealants to achieve long-term caries-inhibition.
    [Abstract] [Full Text] [Related] [New Search]