These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Free phenytoin assessment in patients: measured versus calculated blood serum levels.
    Author: Tobler A, Hösli R, Mühlebach S, Huber A.
    Journal: Int J Clin Pharm; 2016 Apr; 38(2):303-9. PubMed ID: 26746902.
    Abstract:
    BACKGROUND: Total serum drug levels are routinely determined for the therapeutic drug monitoring of selected, difficult-to-dose drugs. For some of these drugs, however, knowledge of the free fraction is necessary to adapt correct dosing. Phenytoin, with its non-linear pharmacokinetics, >90 % albumin binding and slow elimination rate, is such a drug requiring individualization in patients, especially if rapid intravenous loading and subsequent dose adaptation is needed. In a prior long-term investigation, we showed the excellent performance of pharmacy-assisted Bayesian forecasting support for optimal dosing in hospitalized patients treated with phenytoin. In a subgroup analysis, we evaluated the suitability of the Sheiner-Tozer algorithm to calculate the free phenytoin fraction in hypoalbuminemic patients. OBJECTIVE: To test the usefulness of the Sheiner-Tozer algorithm for the correct estimation of the free phenytoin concentrations in hospitalized patients. SETTING: A Swiss tertiary care hospital. METHOD: Free phenytoin plasma concentration was calculated from total phenytoin concentration in hypoalbuminemic patients and compared with the measured free phenytoin. The patients were separated into a low (35 ≤ albumin ≥ 25 g/L) and a very low group (albumin <25 g/L) for comparing and statistically analyzing the calculated and the measured free phenytoin concentration. MAIN OUTCOME MEASURES: Calculated and the measured free phenytoin concentration. RESULTS: The calculated (1.2 mg/L (SD = 0.7) and the measured (1.1 mg/L (SD = 0.5) free phenytoin concentration correlated. The mean difference in the low and the very low albumin group was: 0.10 mg/L (SD = 1.4) (n = 11) and 0.13 mg/L (SD = 0.24) (n = 12), respectively. Although the variability of the data could be a bias, no statistically significant difference between the groups was found: t test (p = 0.78), the Passing-Bablok regression, the Spearman's rank correlation coefficient of r = 0.907 and p = 0.00. The Bland-Altman plot including the regression analysis revealed no systematic differences between the calculated and the measured value [M = 0.11 (SD = 0.28)]. CONCLUSION: In absence of a free phenytoin plasma concentration measurement also in hypoalbuminemic patients, the Sheiner-Tozer algorithm represents a useful tool to assist therapeutic monitoring to calculate or control free phenytoin by using total phenytoin and the albumin concentration.
    [Abstract] [Full Text] [Related] [New Search]