These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3D-Flair sequence at 3T in cochlear otosclerosis.
    Author: Lombardo F, De Cori S, Aghakhanyan G, Montanaro D, De Marchi D, Frijia F, Fortunato S, Forli F, Chiappino D, Berrettini S, Canapicchi R.
    Journal: Eur Radiol; 2016 Oct; 26(10):3744-51. PubMed ID: 26747254.
    Abstract:
    PURPOSE: To assess the capability of three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) sequences in detecting signal alterations of the endolabyrinthine fluid in patients with otosclerosis. MATERIALS AND METHODS: 3D-FLAIR before and after (-/+) gadolinium (Gd) administration was added to the standard MR protocol and acquired in 13 patients with a clinical/audiological diagnosis of severe/profound hearing loss in otosclerosis who were candidates for cochlear implantation and in 11 control subjects using 3-T magnetic resonance imaging (MRI) equipment. The MRI signal of the fluid-filled cochlea was assessed both visually and calculating the signal intensity ratio (SIR = signal intensity cochlea/brainstem). RESULTS: We revealed no endocochlear signal abnormalities on T1-weighted -/+ Gd images for either group, while on 3D-FLAIR we found bilateral hyperintensity with enhancement after Gd administration in eight patients and bilateral hyperintensity without enhancement in one patient. No endocochlear signal abnormalities were detected in other patients or the control group. CONCLUSION: Using 3-T MRI equipment, the 3D-FLAIR -/+ Gd sequence is able to detect the blood-labyrinth barrier (BLB) breakdown responsible for alterations of the endolabyrinthine fluid in patients with cochlear otosclerosis. We believe that 3D-FLAIR +/- Gd is an excellent imaging modality to assess the intra-cochlear damage in otosclerosis patients. KEY POINTS: • Gd-enhanced T1-weighted MRI has limited application to detect intra-cochlear damage. • 3D-FLAIR is less sensitive to flux artefacts and allows multiplanar reconstruction. • Post-Gd 3D-FLAIR is advantageous as it may highlight the BLB breakdown. • Using 3D-FLAIR -/+ Gd, we were able to identify intra-cochlear signal hyperintensities. • 3D-FLAIR might be applied for monitoring disease progression and treatment response.
    [Abstract] [Full Text] [Related] [New Search]