These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapamycin Inhibits Oxidized Low Density Lipoprotein Uptake in Human Umbilical Vein Endothelial Cells via mTOR/NF-κB/LOX-1 Pathway.
    Author: Zhou YD, Cao XQ, Liu ZH, Cao YJ, Liu CF, Zhang YL, Xie Y.
    Journal: PLoS One; 2016; 11(1):e0146777. PubMed ID: 26752047.
    Abstract:
    BACKGROUND: Lectin-like oxidized low-density lipoprotein-1 (LOX-1) is the major receptor for oxidized low density lipoprotein (ox-LDL) uptake in human umbilical vein endothelial cells (HUVECs). Previously, we found that rapamycin inhibited ox-LDL accumulation in HUVECs, and this effect was related to its role in increasing the activity of autophagy-lysosome pathway. In this study, we determined whether rapamycin could also reduce ox-LDL uptake in HUVECs and investigated the underlying signaling mechanisms. RESULTS: Flow cytometry and live cell imaging showed that rapamycin reduced Dil-ox-LDL accumulation in HUVECs. Furthermore, rapamycin reduced the ox-LDL-induced increase in LOX-1 mRNA and protein levels. Western blotting showed that rapamycin inhibited mechanistic target of rapamycin (mTOR), p70s6k and IκBα phosphorylation triggered by ox-LDL. Flow cytometry implied that mTOR, NF-κB knockdown and NF-κB inhibitors significantly reduced Dil-ox-LDL uptake. Moreover, immunofluorescent staining showed that rapamycin reduced the accumulation of p65 in the nucleus after ox-LDL treatment for 30 h. mTOR knockdown decreased LOX-1 protein production and IκBα phosphorylation induced by ox-LDL. NF-κB knockdown and NF-κB inhibitors reduced LOX-1 protein production, but did not inhibit mTOR phosphorylation stimulated by ox-LDL. CONCLUSIONS: These findings demonstrate that rapamycin reduce mTOR phosphorylation and subsequently inhibit NF-κB activation and suppresses LOX-1, resulting in a reduction in ox-LDL uptake in HUVECs.
    [Abstract] [Full Text] [Related] [New Search]