These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular and aqueous microcystin-LR following laboratory exposures of Microcystis aeruginosa to copper algaecides.
    Author: Iwinski KJ, Calomeni AJ, Geer TD, Rodgers JH.
    Journal: Chemosphere; 2016 Mar; 147():74-81. PubMed ID: 26761600.
    Abstract:
    Microcystin release from algal cells influences use of copper-algaecides in water resources. Accurate data regarding relationships between copper-algaecide exposures and responses of microcystin-producing algae are needed to make informed management decisions. Responses of Microcystis aeruginosa were measured in terms of cellular microcystin-LR (MC-LR), aqueous MC-LR, and chlorophyll-a following exposure to CuSO4 and copper-ethanolamine. Comparisons were made between treated and untreated samples, and copper formulations. EC50s and slopes for M. aeruginosa responses to copper exposures were calculated. Algal responses followed a sigmoidal exposure-response relationship, and cellular MC-LR and chlorophyll-a were negatively related to copper concentrations. Aqueous MC-LR increased with copper concentrations, although the increase in aqueous MC-LR was not proportional to decreases in cellular MC-LR and chlorophyll-a. Cellular MC-LR and chlorophyll a declined at a greater rate than aqueous MC-LR increased. Total MC-LR was less than untreated controls following copper exposure. Differences were measured between copper formulations in terms of aqueous and total MC-LR concentrations at concentrations of 0.5 and 1.0 mg Cu L-1. Aqueous and total MC-LR were greater (10-20%) following exposure to CuSO4 compared to copper-ethanolamine one day following exposure. The positive relationship between copper concentration and aqueous MC-LR at 0.07-1.0 mg Cu L-1 demonstrates that lower copper concentrations were as effective as higher concentrations in controlling M. aeruginosa while decreasing the total amount of MC-LR, and minimizing the proportion of MC-LR released to the aqueous-phase. Results serve to support more accurate risk evaluations of MC-LR concentrations when M. aeruginosa is exposed to copper-algaecides and when it is untreated.
    [Abstract] [Full Text] [Related] [New Search]