These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enantiomeric Separations of Pyriproxyfen and its Six Chiral Metabolites by High-Performance Liquid Chromatography.
    Author: Zhang C, Liu H, Liu D, Wang L, Gao J, Zhou Z, Wang P.
    Journal: Chirality; 2016 Mar; 28(3):245-52. PubMed ID: 26773961.
    Abstract:
    Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high-performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD-RH, Chiralpak AY-H, Chiralpak AD-H, Chiracel OJ-H, (R,R)-Whelk-O 1, and Lux Cellulose-3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY-H, or Chiracel OJ-H under normal conditions. Chiralcel OJ-H showed the best chiral separation results with n-hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ-H under optimized condition: n-hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites , , and obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose-3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level.
    [Abstract] [Full Text] [Related] [New Search]