These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Radionuclides and toxic elements transfer from the princess dump to water in Roodepoort, South Africa. Author: Dlamini SG, Mathuthu MM, Tshivhase VM. Journal: J Environ Radioact; 2016 Mar; 153():201-205. PubMed ID: 26774650. Abstract: High concentrations of radionuclides and toxic elements in gold mine tailings facilities present a health hazard to the environment and people living near that area. Soil and water samples from selected areas around the Princess Mine dump were collected. Soil sampling was done on the surface (15 cm) and also 100 cm below the surface. Water samples were taken from near the dump, mid-stream and the flowing part of the stream (drainage pipe) passing through Roodepoort from the mine dump. Soil samples were analyzed by gamma-ray spectroscopy using a HPGe detector to determine the activity concentrations of (238)U, (232)Th and (4) (40)K from the activities of the daughter nuclides in the respective decay chains. The average activity concentrations for uranium and thorium in soil were calculated to be 129 ± 36.1 Bq/kg and 18.1 ± 4.01 Bq/kg, respectively. Water samples were analyzed using Inductively Coupled Plasma Mass Spectrometer. Transfer factors for uranium and thorium from soil to water (at point A closest to dump) were calculated to be 0.494 and 0.039, respectively. At point Z2, which is furthest from the dump, they were calculated to be 0.121 and 0.004, respectively. These transfer factors indicate that there is less translocation of the radionuclides as the water flows.[Abstract] [Full Text] [Related] [New Search]