These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
    Author: Nilsson M, Andreas L, Lagerkvist A.
    Journal: Waste Manag; 2016 May; 51():97-104. PubMed ID: 26786400.
    Abstract:
    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo. The effects of Fe(0) addition can be related to binding of the studied elements to newly formed iron oxides. The effects of Fe(0) addition were often more distinct at pH values between 7 and 9, which indicates that a single treatment with only Fe addition would be less effective and a combined treatment is recommended. The pHstat results showed that accelerated carbonation in combination with Fe(0)(0) addition widens the pH range for low solubility of about one unit for several of the studied elements. This indicates that pre-treating the bottom ash with a combination of accelerated carbonation and Fe(0) addition makes the leaching properties of the ash less sensitive to pH changes that may occur during reuse. All in all, the addition of Fe(0) in combination with carbonation could be an effective pre-treatment method for decreasing the mobility of potentially harmful components in bottom ash.
    [Abstract] [Full Text] [Related] [New Search]