These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rare-Earth-Based Nanoparticles with Simultaneously Enhanced Near-Infrared (NIR)-Visible (Vis) and NIR-NIR Dual-Conversion Luminescence for Multimodal Imaging. Author: Ma D, Xu X, Hu M, Wang J, Zhang Z, Yang J, Meng L. Journal: Chem Asian J; 2016 Apr 05; 11(7):1050-8. PubMed ID: 26788691. Abstract: Multifunctional NaGdF4 :Yb(3+),Er(3+),Nd(3+) @NaGdF4 :Nd(3+) core-shell nanoparticles (called Gd:Yb(3+),Er(3+),Nd(3+) @Gd:Nd(3+) NPs) with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core-shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy-transfer processes, Nd(3+) →Yb(3+) →Er(3+) and Nd(3+) →Yb(3+) , respectively. The effects of Nd(3+) concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd(3+) content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb(3+) ,Er(3+) ,Nd(3+) @Gd:20 % Nd(3+) NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core-shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging.[Abstract] [Full Text] [Related] [New Search]