These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition. Author: Tripathy RK, Sharma LN, Dandapat S. Journal: J Med Syst; 2016 Apr; 40(4):79. PubMed ID: 26798076. Abstract: Ventricular tachycardia (VT) and ventricular fibrillation (VF) are shockable ventricular cardiac ailments. Detection of VT/VF is one of the important step in both automated external defibrillator (AED) and implantable cardioverter defibrillator (ICD) therapy. In this paper, we propose a new method for detection and classification of shockable ventricular arrhythmia (VT/VF) and non-shockable ventricular arrhythmia (normal sinus rhythm, ventricular bigeminy, ventricular ectopic beats, and ventricular escape rhythm) episodes from Electrocardiogram (ECG) signal. The variational mode decomposition (VMD) is used to decompose the ECG signal into number of modes or sub-signals. The energy, the renyi entropy and the permutation entropy of first three modes are evaluated and these values are used as diagnostic features. The mutual information based feature scoring is employed to select optimal set of diagnostic features. The performance of the diagnostic features is evaluated using random forest (RF) classifier. Experimental results reveal that, the feature subset derived from mutual information based scoring and the RF classifier produces accuracy, sensitivity and specificity values of 97.23 %, 96.54 %, and 97.97 %, respectively. The proposed method is compared with some of the existing techniques for detection of shockable ventricular arrhythmia episodes from ECG.[Abstract] [Full Text] [Related] [New Search]