These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Author: Alibolandi M, Abnous K, Sadeghi F, Hosseinkhani H, Ramezani M, Hadizadeh F. Journal: Int J Pharm; 2016 Mar 16; 500(1-2):162-78. PubMed ID: 26802496. Abstract: In this study, we report the design and delivery of tumor-targeted, quantum dot (QD) and doxorubicin (DOX)-encapsulated PEG-PLGA nanopolymersomes (NPs) for the imaging and chemotherapy of breast cancer. To achieve active cancer targeting, QD and DOX-encapsulated NPs were conjugated with folate for folate-binding protein receptor-guided delivery, which overexpressed in many cancer cells. Hydrophobic DOX and hydrophilic MSA-capped QD were encapsulated in the bilayer and core of the PEG-PLGA nanopolymersomes, respectively. The data show that the formulated NPs sustained DOX release for a period of 12 days. Fluorescence microscopy and MTT assay demonstrated that the developed folate-targeted DOX-QD NPs had higher cytotoxicity than non-targeted NPs and the free form of the drug; moreover, they preferentially accumulated in 4T1 and MCF-7 cells in vitro. In vivo experiments including whole organ tissue-homogenate analysis and organ fluorescence microscopy imaging of BALB/c mice bearing 4T1 breast adenocarcinoma showed that the folate receptor-targeted QD encapsulated NPs accumulate at tumor sites 6h following intravenous injection. Acute toxicity studies of the prepared targeted QD-loaded NPs showed no evidence of long-term harmful histopathological and physiological effects on the treated animals. The in vivo tumor inhibitory effect of folic acid (FA)-QD-DOX NPs demonstrated an augmented therapeutic efficacy of targeted formulation over the non-targeted and free drug. The data obtained illustrate a high potential of the prepared targeted theranostic nanoplatform in the treatment and imaging of breast cancer. This study may open new directions for preparation of QD-based theranostic polymersomes for clinical application.[Abstract] [Full Text] [Related] [New Search]