These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: C-Glucopyranosyl-1,2,4-triazol-5-ones: synthesis and inhibition of glycogen phosphorylase. Author: Bokor É, Széles Z, Docsa T, Gergely P, Somsák L. Journal: Carbohydr Res; 2016 Jun 24; 429():128-34. PubMed ID: 26818133. Abstract: Various C-glucopyranosyl-1,2,4-triazolones were designed as potential inhibitors of glycogen phosphorylase. Syntheses of these compounds were performed with O-perbenzoylated glucose derivatives as precursors. High temperature ring closure of N(1)-carbamoyl-C-β-D-glucopyranosyl formamidrazone gave 3-β-D-glucopyranosyl-1,2,4-triazol-5-one. Reaction of N(1)-tosyl-C-β-D-glucopyranosyl formamidrazone with ClCOOEt furnished 3-β-D-glucopyranosyl-1-tosyl-1,2,4-triazol-5-one. In situ prepared β-D-glucopyranosylcarbonyl isocyanate was transformed by PhNHNHBoc into 3-β-D-glucopyranosyl-1-phenyl-1,2,4-triazol-5-one, while the analogous 1-(2-naphthyl) derivative was obtained from the unsubstituted triazolone by naphthalene-2-boronic acid in a Cu(II) catalyzed N-arylation. Test compounds were prepared by Zemplén deacylation. The new glucose derivatives had weak or no inhibition of rabbit muscle glycogen phosphorylase b: the best inhibitor was 3-β-D-glucopyranosyl-1-(2-naphthyl)-1,2,4-triazol-5-one (Ki = 80 µM).[Abstract] [Full Text] [Related] [New Search]