These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of the Wnt/β-catenin signaling pathway in the response of chondrocytes to mechanical loading. Author: Niu Q, Li F, Zhang L, Xu X, Liu Y, Gao J, Feng X. Journal: Int J Mol Med; 2016 Mar; 37(3):755-62. PubMed ID: 26821383. Abstract: In order to better understand the mechanisms by which chondrocytes respond to mechanical stimulation, ATDC5 mouse embryonic carcinoma cells were induced to differentiate into chondrocytes and then exposed to mechanical loading. To specifically elucidate the role of this pathway, the localization and expression of proteins involved in the Wnt/β-catenin signaling pathway were observed. Chondrogenic-differentiated ATDC5 cells were exposed to a 12% cycle tension load for 1, 2, 4, or 8 h. At each time point, immunofluorescence staining, western blot analysis, and qPCR were used to track the localization of β-catenin and glycogen synthase kinase-3β (GSK-3β) expression. In addition, the mRNA expression of Wnt3a, disheveled homolog 1 (Dvl-1), GSK-3β, and collagen type II were also detected. Activation of the Wnt/β-catenin signaling pathway was investigated in cells treated with Dickkopf-related protein 1 (DKK-1). β-catenin and GSK-3β protein expression increased initially and then decreased over the mechanical loading period, and the corresponding mRNA levels followed a similar trend. After application of the inhibitor DKK-1, Wnt/β‑catenin signaling was suppressed, and the mRNA expression of collagen II was also reduced. Thus, stimulation of chondrocytes with mechanical strain loading is associated with the translocation of active β-catenin from the cytoplasm to the nucleus.[Abstract] [Full Text] [Related] [New Search]