These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy. Author: Li S, Zhou Y, Zi Y, Zhang G, Wang ZL. Journal: ACS Nano; 2016 Feb 23; 10(2):2528-35. PubMed ID: 26824304. Abstract: Kelvin probe force microscopy (KPFM), a characterization method that could image surface potentials of materials at the nanoscale, has extensive applications in characterizing the electric and electronic properties of metal, semiconductor, and insulator materials. However, it requires deep understanding of the physics of the measuring process and being able to rule out factors that may cause artifacts to obtain accurate results. In the most commonly used dual-pass KPFM, the probe works in tapping mode to obtain surface topography information in a first pass before lifting to a certain height to measure the surface potential. In this paper, we have demonstrated that the tapping-mode topography scan pass during the typical dual-pass KPFM measurement may trigger contact electrification between the probe and the sample, which leads to a charged sample surface and thus can introduce a significant error to the surface potential measurement. Contact electrification will happen when the probe enters into the repulsive force regime of a tip-sample interaction, and this can be detected by the phase shift of the probe vibration. In addition, the influences of scanning parameters, sample properties, and the probe's attributes have also been examined, in which lower free cantilever vibration amplitude, larger adhesion between the probe tip and the sample, and lower cantilever spring constant of the probe are less likely to trigger contact electrification. Finally, we have put forward a guideline to rationally decouple contact electrification from the surface potential measurement. They are decreasing the free amplitude, increasing the set-point amplitude, and using probes with a lower spring constant.[Abstract] [Full Text] [Related] [New Search]