These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Featured Article: Inhibition of diabetic cataract by glucose tolerance factor extracted from yeast. Author: Mirsky N, Cohen R, Eliaz A, Dovrat A. Journal: Exp Biol Med (Maywood); 2016 Apr; 241(8):817-29. PubMed ID: 26825353. Abstract: Diabetes leads to many complications; among them is the development of cataract. Hyperglycemia brings to increased polyol concentration in the lens, to glycation of lens proteins, and to elevated level of ROS (Reactive Oxygen Species) causing oxidative stress. The glucose tolerance factor (GTF) was found by several groups to decrease hyperglycemia and oxidative stress both in diabetic animals and humans. The aim of our study was to explore the damages induced by high glucose to the eye lens and to assess the protective effects of GTF both in vivo and in vitro The in vivo study included control healthy rats, streptozotocin (STZ) diabetic untreated rats, and STZ diabetic rats orally treated with 15 doses of GTF. The diabetic untreated rats developed cataracts, whereas the development of cataract was totally or partially prevented in GTF treated animals. In vitro studies were done on bovine lenses incubated for 14 days. Half of the lenses were incubated in normal glucose conditions, and half in high glucose conditions (450 mg%). To one group of the normal or high glucose condition GTF was added. The optical quality of all the lenses was measured daily by an automated scanning laser system. The control lenses, whether with or without GTF addition, did not show any reduction in their quality. High glucose conditions induced optical damage to the lenses. Addition of GTF to high glucose conditions prevented this damage. High glucose conditions affected the activity of aldose reductase and sodium potassium ATPase in lens epithelial cell. Addition of GTF decreased the destructive changes induced by high glucose conditions. The amount of soluble cortical lens proteins was decreased and structural changes were detected in lenses incubated in high glucose medium. These changes could be prevented when GTF was added to high glucose medium. Our findings demonstrate the anticataractogenic potential of GTF.[Abstract] [Full Text] [Related] [New Search]