These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photosynthetic limitation of several representative subalpine species in the Catalan Pyrenees in summer.
    Author: Fernàndez-Martínez J, Fleck I.
    Journal: Plant Biol (Stuttg); 2016 Jul; 18(4):638-48. PubMed ID: 26833754.
    Abstract:
    Information on the photosynthetic process and its limitations is essential in order to predict both the capacity of species to adapt to conditions associated with climate change and the likely changes in plant communities. Considering that high-mountain species are especially sensitive, three species representative of subalpine forests of the Central Catalan Pyrenees: mountain pine (Pinus uncinata Mill.), birch (Betula pendula Roth) and rhododendron (Rhododendron ferrugineum L.) were studied under conditions associated with climate change, such as low precipitation, elevated atmospheric [CO2 ] and high solar irradiation incident at Earth's surface, in order to detect any photosynthetic limitations. Short-term high [CO2 ] increased photosynthesis rates (A) and water use efficiency (WUE), especially in birch and mountain pine, whereas stomatal conductance (gs ) was not altered in either species. Birch showed photosynthesis limitation through stomatal closure related to low rainfall, which induced photoinhibition and early foliar senescence. Rhododendron was especially affected by high irradiance, showing early photosynthetic saturation in low light, highest chlorophyll content, lowest gas exchange rates and least photoprotection. Mountain pine had the highest A, photosynthetic capacity (Amax ) and light-saturated rates of net CO2 assimilation (Asat ), which were maintained under reduced precipitation. Furthermore, maximum quantum yield (Fv /Fm ), thermal energy dissipation, PRI and SIPI radiometric index, and ascorbate content indicated improved photoprotection with respect to the other two species. However, maximum velocity of carboxylation of RuBisco (Vcmax ) indicated that N availability would be the main photosynthetic limitation in this species.
    [Abstract] [Full Text] [Related] [New Search]