These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electro-plasmonic 2 × 2 channel-routing switch arranged on a thin-Si-doped metal/insulator/semiconductor/metal structure. Author: Moazzam MK, Kaatuzian H. Journal: Appl Opt; 2016 Jan 20; 55(3):565-75. PubMed ID: 26835932. Abstract: Plasmonics as a new field of chip-scale technology is the interesting substrate of this study to propose and numerically investigate a metal/insulator/semiconductor/metal (MISM)-structure 2×2 plasmonic routing switch. As a planar subwavelength arrangement, the presented design has two npn-doped side-coupled dual waveguides whose duty is to route the propagating surface plasmon polaritons through the device. Relying on the MISM structure, which has a MOS-like thin-film arrangement of typically 45 nm doped silicon covered by a layer of 8 nm thick HfO(2) gate insulator, the routing configuration is electrically addressed based on the carrier-induced plasma dispersion effects as an external electro-plasmonic switching control. Finite-element-method-conducted electromagnetic simulations are employed to evaluate the switch optical response at telecom wavelength of λ=1550 nm, due to which the balanced operation measure of extinction ratios larger than 10 dB and insertion losses of around -1.8 dB are obtained for both channels of CROSS and STRAIGHT. Compared with other photonic and plasmonic switching counterparts, this configuration, besides its potential for CMOS compatibility, can be utilized as a high-speed compact building block to sustain higher-speed, more miniaturized, and less consuming electro-optic routing/switching protocols toward complicated optical integrated circuits and systems.[Abstract] [Full Text] [Related] [New Search]