These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effect of High Ammonium on Nitrogen Removal in an Partial Nitritation-ANAMMOX Process with Reflux System]. Author: Li X, Cui JH, Yuan Y, Huang Y, Yuan Y, Liu X. Journal: Huan Jing Ke Xue; 2015 Oct; 36(10):3749-55. PubMed ID: 26841608. Abstract: The effect of influent ammonia on nitrogen transformation characteristics and microbial communities in partial nitrification-anaerobic ammonia oxidation (PN-ANAMMOX) process was studied by using a series of partial nitrification and ANAMMOX process with air-lift reflux device. The results showed that when the influent ammonia concentration was increased to 700 mg x L(-1) and the nitrogen volume load was stabled at 2.8 kg x (m3 x d)(-1), the fluctuation of pH value was very small in aerobic and anaerobic zone. In the aerobic and anaerobic zone, FA concentrations were maintained at 5'mg x L(-1), 10 mg x L(-1), respectively, which did not inhibit the growth of microorganisms. Nitrite produce rate was stabled at 1.5 kg x (m3 x d)(-1) in the aerobic zone, and nitrogen removal rate was stabled at 31.49 kg x (m3 x d)(-1) in anaerobic zone, the total nitrogen removal rate was stabled at 1.67 kg x (m3 x d)(-1) in combined process. When the influent ammonia concentration was increased to 900 mg x L(-1), the FA and FNA concentration were increased in each areas, total nitrogen removal rate was decreased and stabled at 1.52 kg x- ( m3x- d( 1)'. The nitrite was accumulated in the anaerobic zone, and there was no significant inhibition of ANAMMOX bacteria. Our findings indicated that the reflux can effectively alleviate the fluctuation of pH in each area, and dilute FA concentration which is toxic to microorganisms.[Abstract] [Full Text] [Related] [New Search]