These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diaphragmatic fatigue during inspiratory muscle loading in normoxia and hypoxia.
    Author: Walker DJ, Farquharson F, Klenze H, Walterspacher S, Storz L, Duerschmied D, Roecker K, Kabitz HJ.
    Journal: Respir Physiol Neurobiol; 2016 Jun 15; 227():1-8. PubMed ID: 26845453.
    Abstract:
    INTRODUCTION: Diaphragmatic fatigue (DF) occurs during strenuous loading of respiratory muscles (e.g., heavy-intensity whole-body exercise, normocapnic hyperpnea, inspiratory resistive breathing). DF develops early on during normoxia, without further decline toward task failure; however, its progression during inspiratory muscle loading in during hypoxia remains unclear. Therefore, the present study used volume-corrected transdiaphragmatic pressures during supramaximal magnetic phrenic nerve stimulation (Pdi,twc) to investigate the effect of hypoxia on the progression of diaphragmatic fatigue during inspiratory muscle loading. METHODS: Seventeen subjects completed two standardized rounds of inspiratory muscle loading (blinded, randomized) under the following conditions: (i) normoxia, and (ii) normobaric hypoxia (SpO2 80%), with Pdi,twc assessment every 45 s. RESULTS: In fatiguers (i.e., Pdi,twc reduction >10%, n=10), biometric approximation during normoxia is best represented by Pdi,twc=4.06+0.83 exp(-0.19 × x), in contrast to Pdi,twc=4.38-(0.05 × x) during hypoxia. CONCLUSION: Progression of diaphragmatic fatigue during inspiratory muscle loading assessed by Pdi,tw differs between normoxia and normobaric hypoxia: in the former, Pdi,tw follows an exponential decay, whereas during hypoxia, Pdi,tw follows a linear decline.
    [Abstract] [Full Text] [Related] [New Search]