These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monitoring free light chains in serum using mass spectrometry. Author: Barnidge DR, Dispenzieri A, Merlini G, Katzmann JA, Murray DL. Journal: Clin Chem Lab Med; 2016 Jun 01; 54(6):1073-83. PubMed ID: 26845720. Abstract: BACKGROUND: Serum immunoglobulin free light chains (FLC) are secreted into circulation by plasma cells as a by-product of immunoglobulin production. In a healthy individual the population of FLC is polyclonal as no single cell is secreting more FLC than the total immunoglobulin secreting cell population. In a person with a plasma cell dyscrasia, such as multiple myeloma (MM) or light chain amyloidosis (AL), a clonal population of plasma cells secretes a monoclonal light chain at a concentration above the normal polyclonal background. METHODS: We recently showed that monoclonal immunoglobulin rapid accurate mass measurement (miRAMM) can be used to identify and quantify a monoclonal light chain (LC) in serum and urine above the polyclonal background. This was accomplished by reducing immunoglobulin disulfide bonds releasing the LC to be analyzed by microLC-ESI-Q-TOF mass spectrometry. Here we demonstrate that the methodology can also be applied to the detection and quantification of FLC by analyzing a non-reduced sample. RESULTS: Proof of concept experiments were performed using purified FLC spiked into normal serum to assess linearity and precision. In addition, a cohort of 27 patients with AL was analyzed and miRAMM was able to detect a monoclonal FLC in 23 of the 27 patients that had abnormal FLC values by immunonephelometry. CONCLUSIONS: The high resolution and high mass measurement accuracy provided by the mass spectrometry based methodology eliminates the need for κ/λ ratios as the method can quantitatively monitor the abundance of the κ and λ polyclonal background at the same time it measures the monoclonal FLC.[Abstract] [Full Text] [Related] [New Search]