These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: UPLC-MS/MS assay of 21-aminosteroid (lazaroid U74389G) for application in pharmacokinetic study.
    Author: Gadgil P, Ibrahim F, Chow DS.
    Journal: J Pharm Biomed Anal; 2016 Apr 15; 122():90-7. PubMed ID: 26848737.
    Abstract:
    Lazaroids are potent inhibitors of lipid peroxidation, both in vitro and in vivo. Additionally, a member of the lazaroid family, U-74389G (LAZ) has been shown to have specific radio-protective and anti-proliferative effects. However, there is no quantitative analytical method developed for measuring the therapeutic levels of LAZ for the aforementioned effects. This article highlights the development and validation of a sensitive UPLC-MS/MS method for the quantification of LAZ, and its subsequent application in pharmacokinetic studies in rats with the lower limit of quantification (LLOQ) of 1.95 ng/mL. LAZ and internal standard diadzein (IS) were separated using ACQUITY UPLC(®) BEH C18 column. Gradient elution was used at a flow rate of 0.45 mL/min with mobile phases consisting of 0.1% formic acid in water and 0.1% formic in acetonitrile. LAZ (m/z 612→260) and IS (m/z 255→199) were detected by electrospray ionization (ESI) using multiple reaction monitoring (MRM) in a positive mode on QTRAP(®) 5500 System. The UPLC-MS/MS method was validated as per the US FDA Guidelines for Bio-analytical Validation. LAZ was extracted from rat plasma (100 μL) using protein precipitation by acetonitrile with mean recovery and matrix factor in range of 47.7-56.1%, and 85.6-89.4%, respectively. The calibration curve for LAZ was linear in the range of 1.95-250 ng/mL. The inter-day and intra-day accuracy and precision values for LLOQ, low, medium, high and very high concentration QC samples were within ±15%. LAZ was tested under different storage conditions, for short-term bench-top stability (1h and 3h at 25°C), long-term stability (1 month at -80°C), freeze-thaw cycle stability (1 cycle and 3 cycles) and stability of processed samples in auto-sampler (24h at 10°C) with stability values within ±15% range of nominal concentrations. The validated UPLC-MS/MS method was further applied to a pharmacokinetic study in rats after a single intravenous dose of LAZ at 5 mg/kg.
    [Abstract] [Full Text] [Related] [New Search]