These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-342-5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling.
    Author: Yan XC, Cao J, Liang L, Wang L, Gao F, Yang ZY, Duan JL, Chang TF, Deng SM, Liu Y, Dou GR, Zhang J, Zheng QJ, Zhang P, Han H.
    Journal: J Am Heart Assoc; 2016 Feb 08; 5(2):. PubMed ID: 26857067.
    Abstract:
    BACKGROUND: Endothelial cells (ECs) form blood vessels through angiogenesis that is regulated by coordination of vascular endothelial growth factor (VEGF), Notch, transforming growth factor β, and other signals, but the detailed molecular mechanisms remain unclear. METHODS AND RESULTS: Small RNA sequencing initially identified miR-342-5p as a novel downstream molecule of Notch signaling in ECs. Reporter assay, quantitative reverse transcription polymerase chain reaction and Western blot analysis indicated that miR-342-5p targeted endoglin and modulated transforming growth factor β signaling by repressing SMAD1/5 phosphorylation in ECs. Transfection of miR-342-5p inhibited EC proliferation and lumen formation and reduced angiogenesis in vitro and in vivo, as assayed by using a fibrin beads-based sprouting assay, mouse aortic ring culture, and intravitreal injection of miR-342-5p agomir in P3 pups. Moreover, miR-342-5p promoted the migration of ECs, accompanied by reduced endothelial markers and increased mesenchymal markers, indicative of increased endothelial-mesenchymal transition. Transfection of endoglin at least partially reversed endothelial-mesenchymal transition induced by miR-342-5p. The expression of miR-342-5p was upregulated by transforming growth factor β, and inhibition of miR-342-5p attenuated the inhibitory effects of transforming growth factor β on lumen formation and sprouting by ECs. In addition, VEGF repressed miR-342-5p expression, and transfection of miR-342-5p repressed VEGFR2 and VEGFR3 expression and VEGF-triggered Akt phosphorylation in ECs. miR-342-5p repressed angiogenesis in a laser-induced choroidal neovascularization model in mice, highlighting its clinical potential. CONCLUSIONS: miR-342-5p acts as a multifunctional angiogenic repressor mediating the effects and interaction among angiogenic pathways.
    [Abstract] [Full Text] [Related] [New Search]