These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recombinant granulocyte-macrophage colony-stimulating factor increases adenylate cyclase activity in murine peritoneal macrophages.
    Author: Coleman DL, Liu J, Bartiss AH.
    Journal: J Immunol; 1989 Dec 15; 143(12):4134-40. PubMed ID: 2687376.
    Abstract:
    Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotrophic cytokine which stimulates the function and proliferation of macrophage populations. Although the effects of GM-CSF are diverse and GM-CSF has entered into clinical trials, relatively little is known about signal transduction pathways utilized by GM-CSF. In view of previous studies which have suggested that some of the effects of GM-CSF on monocyte-macrophages can be mimicked by agents which increase intracellular cAMP, we investigated the effect of rGM-CSF on adenylate cyclase (AC) activity in murine peritoneal macrophages. Adenylate cyclase activity was quantitated in macrophage membrane preparations and in intact cells. In seven separate experiments, GM-CSF (50 U/ml) increased AC activity by 61(6)% relative to macrophages treated with carrier medium alone. A dose-dependent increase in AC activity was observed (10 to 100 U/ml) which peaked within 1 to 5 min after the addition of GM-CSF and returned to basal levels by 10 to 20 min. Lineweaver-Burk analysis revealed that the Vmax of macrophage AC was increased from 0.40 to 0.52 pmoles cAMP/min by GM-CSF but the Km was unchanged. Intracellular cAMP was increased by GM-CSF to 129(27)% of control values by 1 min of treatment (n = 6). Under similar experimental conditions, GM-CSF did not increase the activity of PK C (n = 14) or phospholipase A2 (n = 3) in peritoneal macrophages. These data show that macrophage adenylate cyclase activity is rapidly stimulated by GM-CSF. Moreover, these findings support further study of the role of cAMP in transmitting the intracellular signals initiated by GM-CSF in tissue macrophages.
    [Abstract] [Full Text] [Related] [New Search]