These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diabetes, Gray Matter Loss, and Cognition in the Setting of Parkinson Disease.
    Author: Petrou M, Davatzikos C, Hsieh M, Foerster BR, Albin RL, Kotagal V, Müller ML, Koeppe RA, Herman WH, Frey KA, Bohnen NI.
    Journal: Acad Radiol; 2016 May; 23(5):577-81. PubMed ID: 26874576.
    Abstract:
    RATIONALE AND OBJECTIVES: Parkinson disease (PD) is a progressive neurodegenerative disorder affecting motor and cognitive functions. Prior studies showed that patients with PD and diabetes (DM) demonstrate worse clinical outcomes compared to nondiabetic subjects with PD. Our study aimed at defining the relationship between DM, gray matter volume, and cognition in patients with PD. MATERIALS AND METHODS: This study included 36 subjects with PD (12 with DM, 24 without DM, mean age = 66). Subjects underwent high-resolution T1-weighted brain magnetic resonance imaging, [(11)C]dihydrotetrabenazine positron emission tomography imaging to quantify nigrostriatal dopaminergic denervation, clinical, and cognitive assessments. Magnetic resonance images were postprocessed to determine total and lobar cortical gray matter volumes. Cognitive testing scores were converted to z-scores for specific cognitive domains and a composite global cognitive z-score based on normative data computed. Analysis of covariance, accounting for effects of age, gender, intracranial volume, and striatal [(11)C]dihydrotetrabenazine binding, was used to test the relationship between DM and gray matter volumes. RESULTS: Impact of DM on total gray matter volume was significant (P = 0.02). Post hoc analyses of lobar cortical gray matter volumes revealed that DM was more selectively associated with lower gray matter volumes in the frontal regions (P = 0.01). Cognitive post hoc analyses showed that interaction of total gray matter volume and DM status was significantly associated with composite (P = 0.007), executive (P = 0.02), and visuospatial domain cognitive z-scores (P = 0.005). These associations were also significant for the frontal cortical gray matter. CONCLUSION: DM may exacerbate brain atrophy and cognitive functions in PD with greater vulnerability in the frontal lobes. Given the high prevalence of DM in the elderly, delineating its effects on patient outcomes in the PD population is of importance.
    [Abstract] [Full Text] [Related] [New Search]