These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Label-free cascade amplification strategy for sensitive visual detection of thrombin based on target-triggered hybridization chain reaction-mediated in situ generation of DNAzymes and Pt nanochains. Author: Zhang Y, Ren W, Luo HQ, Li NB. Journal: Biosens Bioelectron; 2016 Jun 15; 80():463-470. PubMed ID: 26878483. Abstract: A new magnetic bead-based cascade amplification strategy for highly sensitive visual detection of proteins (thrombin as a model analyte) was developed by coupling target-triggered hybridization chain reaction (HCR) with the synergistic catalysis of DNA concatemer-mediated hemin/G-quadruplex DNAzymes and Pt nanozymes. Initially, the biotinylated primer DNA (P-DNA) was complementary with aptamer to form dsDNA which was further linked to streptavidin-coated magnetic bead (MB), thereby fabricating the expected MB-based aptasensor. In the presence of target TB, the aptamer was taken away from the aptasensor, and the free P-DNA immediately triggered HCR to spontaneously form DNA concatemer-directed nanochains with numerous DNAzymes and Pt nanoclusters (PtNCs) to achieve cascades signal amplification. The dual peroxidase mimetics catalyzed the H2O2-mediated oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the colored TMB oxides (oxTMB), causing intensified color change of the chromogenic solution for the highly sensitive naked-eye detection of as low as 100.0 pM TB. In this strategy, the employment of magnetic separation and exonuclease III (Exo III)-assisted digestion of residual dsDNA minimized the background noise and avoided the false positive results, greatly improving the detection accuracy and sensitivity with a low limit of detection (LOD=15.0 pM). The proposed visual platform has promise for detecting various types of proteins with careful DNA sequence designs.[Abstract] [Full Text] [Related] [New Search]