These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Response of potassium channels to estrogen and progesterone in the uterine smooth muscle cells of adenomyosis in vitro]. Author: Shi J, Jin L, Leng J, Lang J. Journal: Zhonghua Fu Chan Ke Za Zhi; 2015 Nov; 50(11):843-7. PubMed ID: 26887773. Abstract: OBJECTIVE: To investigate the expression of potassium channels and the influence of estrogen and progesterone on the cultured uterine smooth muscle cells (USMC) of adenomyosis in vitro. METHODS: There were 22 cases of adenomyosis hysterectomy in the adenomyosis group and 12 patients with cervical intraepithelial neoplasia III removal of the uterus in the control group. USMC were separated and cultured in vitro, incubated with different concentrations of estrogen and progesterone. We used reverse transcription-PCR to dectect the expression of large-conductance calcium- and voltage-sensitive potassium channel α subunit (BKCa α) and voltage-gated potassium channel 4.3 (Kv4.3). RESULTS: The mRNA expression of BKCa α and Kv4.3 in the adenomyosis group (4.43±2.05 and 4.52±1.97) were significantly higher than those in the control group (0.83±0.25 and 0.86±0.19, P<0.05). In the control group, Kv4.3 mRNA decreased after treated with 0.1 nmol/L (0.17±0.10) and 1.0 nmol/L (0.13±0.08) estrogen than before (0.55±0.29, P<0.05). In the adenomyosis group, BKCa α mRNA decreased significantly after treated with 10.0 nmol/L estrogen (0.56±0.27 versus 1.01±0.35, P<0.05). 0.1 µmol/L progesterone elevated both BKCa α mRNA (0.44±0.24 versus 0.16±0.09) and Kv4.3 mRNA (1.29±0.51 versus 0.55±0.29) in the control group (all P<0.05); however, there were no significant difference in adenomyosis group of different concentration of progestrone (P>0.05). CONCLUSION: There is an abnormal expression of potassium channels in the adenomyosis USMC, which is regulated by high concentration of estrogen and might be resistant to progesterone.[Abstract] [Full Text] [Related] [New Search]