These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene. Author: Shimo Y, Mikami T, Hamao S, Goto H, Okamoto H, Eguchi R, Gohda S, Hayashi Y, Kubozono Y. Journal: Sci Rep; 2016 Feb 19; 6():21008. PubMed ID: 26893188. Abstract: Many chemists have attempted syntheses of extended π-electron network molecules because of the widespread interest in the chemistry, physics and materials science of such molecules and their potential applications. In particular, extended phenacene molecules, consisting of coplanar fused benzene rings in a repeating W-shaped pattern have attracted much attention because field-effect transistors (FETs) using phenacene molecules show promisingly high performance. Until now, the most extended phenacene molecule available for transistors was [8]phenacene, with eight benzene rings, which showed very high FET performance. Here, we report the synthesis of a more extended phenacene molecule, [9]phenacene, with nine benzene rings. Our synthesis produced enough [9]phenacene to allow the characterization of its crystal and electronic structures, as well as the fabrication of FETs using thin-film and single-crystal [9]phenacene. The latter showed a field-effect mobility as high as 18 cm(2) V(-1) s(-1), which is the highest mobility realized so far in organic single-crystal FETs.[Abstract] [Full Text] [Related] [New Search]