These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice.
    Author: Hong SI, Kwon SH, Hwang JY, Ma SX, Seo JY, Ko YH, Kim HC, Lee SY, Jang CG.
    Journal: Biomol Ther (Seoul); 2016 Mar 01; 24(2):115-22. PubMed ID: 26902082.
    Abstract:
    Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantl. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findingssuggest that modulation of D2-like receptors might enhance the effect of MT on sleep.
    [Abstract] [Full Text] [Related] [New Search]