These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Progress of clinical practice on the management of burn-associated pain: Lessons from animal models. Author: McIntyre MK, Clifford JL, Maani CV, Burmeister DM. Journal: Burns; 2016 Sep; 42(6):1161-72. PubMed ID: 26906668. Abstract: Opioid-based analgesics provide the mainstay for attenuating burn pain, but they have a myriad of side effects including respiratory depression, nausea, impaired gastrointestinal motility, sedation, dependence, physiologic tolerance, and opioid-induced hyperalgesia. To test and develop novel analgesics, validated burn-relevant animal models of pain are indispensable. Herein we review such animal models, which are mostly limited to rodent models of burn-induced, inflammatory, and neuropathic pain. The latter two are pain syndromes that provide insight into the pain caused by systemic pro-inflammatory cytokines and direct injury to nerves (e.g., after severe burn), respectively. To date, no single animal model optimally mimics the complex pathophysiology and pain that a human burn patient experiences. No currently available burn-pain model examines effects of pharmacological intervention on wound healing. As cornerstones of pain and wound healing, pro-inflammatory mediators may be utilized for insight into both processes. Moreover, common clinical concerns such as systemic inflammatory response syndrome and multiple organ dysfunction remain unaddressed. For development of analgesics, these aberrations can significantly alter the potential efficacy and/or adverse effects of a prescribed analgesic following burn trauma. We therefore suggest that a multi-model strategy would be the most clinically relevant when evaluating novel analgesics for use in burn patients.[Abstract] [Full Text] [Related] [New Search]