These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A biodegradable killer microparticle to selectively deplete antigen-specific T cells in vitro and in vivo.
    Author: Wang W, Fang K, Li MC, Chang D, Shahzad KA, Xu T, Zhang L, Gu N, Shen CL.
    Journal: Oncotarget; 2016 Mar 15; 7(11):12176-90. PubMed ID: 26910923.
    Abstract:
    The specific eradication of pathogenic T cells for the treatment of allograft rejections and autoimmune disorders without impairment of overall immune function is a fundamental goal. Here, cell-sized poly(lactic-co-glycolic acid) microparticles (PLGA MPs) were prepared as a scaffold to co-display the peptide/major histocompatibility complex (pMHC, target antigen) and anti-Fas monoclonal antibody (apoptosis-inducing molecule) for the generation of biodegradable killer MPs. Ovalbumin (OVA) antigen-targeted killer MPs significantly depleted OVA-specific CD8+ T cells in an antigen-specific manner, both in vitro and in OT-1 mice. After intravenous administration, the killer MPs predominantly accumulated in the liver, lungs, and gut of OT-1 mice with a retention time of up to 48 hours. The killing effects exerted by killer MPs persisted for 4 days after two injections. Moreover, the H-2Kb alloantigen-targeted killer MPs were able to eliminate low-frequency alloreactive T cells and prolong alloskin graft survival for 41.5 days in bm1 mice. Our data indicate that PLGA-based killer MPs are capable of specifically depleting pathogenic T cells, which highlights their therapeutic potential for treating allograft rejection and autoimmune disorders.
    [Abstract] [Full Text] [Related] [New Search]