These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson's disease by reducing chronic inflammation in the brain.
    Author: Cao L, Li D, Feng P, Li L, Xue GF, Li G, Hölscher C.
    Journal: Neuroreport; 2016 Apr 13; 27(6):384-91. PubMed ID: 26918675.
    Abstract:
    The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are growth factors. GLP-1 mimetics are on the market as treatments for type 2 diabetes. Both GLP-1 and GIP mimetics have shown neuroprotective properties in previous studies. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed to treat diabetes. Here, we report the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once daily (20 mg/kg intraperitoneally) for 7 days and the dual agonist was coinjected once daily (50 nmol/kg intraperitoneally). We found that the drug reduced most of the MPTP-induced motor impairments in the rotarod, open-field locomotion, and muscle strength test. The number of tyrosine hydroxylase-positive neurons in the substantia nigra and striatum was reduced by MPTP and increased by DA-JC1. Synapse numbers (synaptophysin expression) were reduced in the substantia nigra and the striatum by MPTP and DA-JC1 reversed this effect. The activation of a chronic inflammation response by MPTP was considerably reduced by the dual agonist (DA) (astroglia and microglia activation). Therefore, dual agonists show promise as a novel treatment of PD.
    [Abstract] [Full Text] [Related] [New Search]