These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Granulocyte-colony stimulating factor promotes brain repair following traumatic brain injury by recruitment of microglia and increasing neurotrophic factor expression.
    Author: Song S, Kong X, Acosta S, Sava V, Borlongan C, Sanchez-Ramos J.
    Journal: Restor Neurol Neurosci; 2016 Feb 24; 34(3):415-31. PubMed ID: 26923619.
    Abstract:
    PURPOSE: The overall objective was to elucidate cellular mechanisms by which G-CSF enhances recovery from traumatic brain injury in a hippocampal-dependent learning task. METHODS: Chimeric mice were prepared by transplanting bone marrow cells that express green fluorescent protein (GFP+) from a transgenic "green" mice into C57BL/6 mice. Two months later, the animals sustained mild controlled cortical impact (CCI) to the right frontal-parietal cortex, followed by G-CSF (100 μg/kg) treatment for 3 consecutive days. The primary behavioral end-point was performance on the radial arm water maze (RAWM) assessed before and after CCI (days 7 and 14). Secondary endpoints included a), motor performance on a rotating cylinder (rotarod), b) measurement of microglial and astroglial response, c) hippocampal neurogenesis, and d) measures of neurotrophic factors (BDNF, GDNF) in brain homogenates. RESULTS: G-CSF treatment resulted in significantly better performance on the rotorod at one week, and in the RAWM after one and two weeks. The cellular changes found 2 wks after CCI in the G-CSF group included increased numbers of hippocampal newborn neurons as well as astrocytosis and microgliosis in striatum and frontal cortex on both sides of brain. GFP+ cells that co-labeled with Iba1 (microglial marker) comprised a significant proportion of striatal microglia in G-CSF treated animals, indicating the capacity of G-CSF to increase microglial recruitment to the site of injury. Neurotrophic factors GDNF and BDNF, elaborated by activated microglia and astrocytes, were increased in G-CSF treated mice. CONCLUSIONS: G-CSF serves as a neurotrophic factor that increases hippocampal neurogenesis (or enhances survival of new-born neurons), and activates astrocytes and microglia. In turn, these activated glia release a plethora of cytokines and neurotrophic factors that contribute, in a poorly understood cascade, to the brain's repair response. G-CSF also acts directly on bone marrow-derived cells to enhance recruitment of microglia to the site of CCI from circulating monocytes to the site of CCI.
    [Abstract] [Full Text] [Related] [New Search]