These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma). Author: Mu J, Jin F, Wang J, Wang Y, Cong Y. Journal: Environ Sci Pollut Res Int; 2016 Jun; 23(11):11289-11297. PubMed ID: 26924701. Abstract: Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in crude oils, of which, 3-5 ring alkyl-PAH may cause dioxin-like toxicity to early life stages of fish. Retene (7-isopropyl-1-methylphenanthrene), a typical alkyl-phenanthrene compound, can be more toxic than phenanthrene, and the mechanism of retene toxicity is likely related to its rapid biotransformation by cytochrome P450 (CYP) enzymes to metabolites with a wide array of structures and potential toxicities. Here, we investigated how α-naphthoflavone (ANF), a cytochrome P450 1A (CYP1A) inhibitor, affected the embryotoxicity of retene and the role that CYP1A inhibition may play in the interactions. Marine medaka (Oryzias melastigma) embryos were exposed, separately or together, to 200 μg/L retene with 0, 5, 10, 100, and 200 μg/L ANF for 14 days. The results showed that ANF significantly inhibited the induction of CYP1A activity by retene; however, ANF interacted with retene to induce significant developmental toxicity and genotoxicity at 10, 100, and 200 μg/L (p < 0.01). Tissue concentrations of retene and its metabolites and lipid hydroperoxide (LPO) activity also increased, whereas the inhibition of the glutathione S-transferase (GST) activity and the alteration in metabolic profiles of retene were observed. The interactions of retene with ANF indicate that CYP1A inhibition was possibly act through different mechanisms to produce similar developmental effects and genotoxicity. Retene metabolites and altered metabolic profile were likely responsible for retene embryotoxicity to marine medaka. Therefore, elevated toxicity of alkyl-phenanthrene under CYP1A inhibitor suggested that the ecotoxicity of PAHs in coastal water may have underestimated the threat of PAHs to fish or ecosystem.[Abstract] [Full Text] [Related] [New Search]