These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New Software for Preoperative Diagnostics of Meningeal Tumor Histologic Types. Author: Krivoshapkin AL, Sergeev GS, Kalneus LE, Gaytan AS, Murtazin VI, Kurbatov VP, Volkov AM, Kostromskaya DV, Pyatov SM, Amelin ME, Duishobaev AR. Journal: World Neurosurg; 2016 Jun; 90():123-132. PubMed ID: 26926798. Abstract: OBJECTIVE: Meningeal tumors are neoplasms with different histologic manifestations of both benign and malignant types that determine the prognosis of tumor recurrence and its consistency. The risk of surgical treatment depends on the location, size, and consistency of the tumor. Magnetic resonance imaging (MRI) sequences can be used to identify the features of tumors, but these MRI characteristics are not well understood. The present study describes an advanced mathematical algorithm to analyze MRI data and distinguish histologic types of meningeal tumors before surgery. METHODS: Forty-eight patients underwent surgical removal of meningeal brain tumor. All patients had preoperative MRI with a 1.5-T scanner. One radiologist and 2 neurosurgeons evaluated MRI histogram peaks of the whole tumor volume using the advanced computer algorithm. RESULTS: Three specialists received the following mean value of histogram peaks: 15.99 ± 0.23 (± standard error of the mean [SEM]) for meningoteliomatous meningiomas; 21.24 ± 0.3 (±SEM) for fibroplastic meningiomas; 19.0 ± 0.28 (±SEM) for transitional meningiomas; 10.7 ± 0.27 (±SEM) for anatypical, anaplastic meningiomas, 11.03 ± 0.51 (±SEM) for primary intracranial fibrosarcomas and 25.72 ± 0.29 (±SEM) for meningeal hemangiopericytomas. A one-way analysis of variance test proved the difference between group means: F = 70.138, P < 0.01. The Tukey test and the Games-Howell test indicated that the difference between the tumor groups was significant. Mean deviation in agreement index between specialists was 0.98 ± 0.007 (±SEM). CONCLUSIONS: The advanced algorithm proved high specificity, sensitivity, and interoperator repeatability.[Abstract] [Full Text] [Related] [New Search]